Physiology of the Pneumoperitoneum

Linda B.
Resident Rounds 18/08/06
Case:

• 34 y.o. female undergoing elective laparoscopic cholecystectomy
• PMH: nil, obese
• Medx: nil
• Allg: nil
Case:

- Intra-op:
 - 17 mm Hg pneumoperitoneum
 - Reverse Trendellenberg
 - Dissection of GB
 - Bleeding from liver bed noted
 - Sudden ↓ sBP to 70/40 mm Hg, HR 120
 - Sats 68 %, ↓ ET CO₂
 - What next?

.....
Case:

• Abdomen desufflated
• BP still 60 / 40
• ? “Millwheel” Murmur heard
• ??
Outline:

• Background

• Physiologic effects
 – Cardiovascular
 – Pulmonary
 – Gastrointestinal
 – Renal
 – Peripheral vascular
Background:

• “Pneumoperitoneum”:
 – Gas in the peritoneal cavity
 – Induced in laparoscopic surgery to elevate abdominal wall
 – Gases used: CO$_2$, N$_2$O, He
Background:

- 1901 – 1st laparoscopic pneumoperitoneum established (George Kelling)
Background:

- 1901 – 1st laparoscopic pneumoperitoneum established (George Kelling)
- 1900-1970 mainly diagnostic use
- 1970s – 1st therapeutic applications in gynecology
- 1990s – 1st application in cholecystectomy
- 2000s
 - bowel resection, nephrectomy, splenectomy, gastrectomy, hernia repair, etc, etc…
Physiologic Effects:

- Cardiovascular
- Pulmonary
- Renal
- Gastrointestinal
- Peripheral vascular
Physiologic Effects:

- Mechanical Effects
- AND
- Metabolic Effects
Cardiovascular Effects:

↑ IAP → ↑ CVP → ↓ VR → ↓ Preload → ↓ SV → ↓ CO

↑ PCWP → ↓ LVEDV

↑ SVR → ↑ MAP

↓ CO × ↓ HR → ↓ SV

Peritoneal Stretch

Vasovagal response
Cardiovascular Effects:

- ↑ IAP
- ↑ CVP
 - ↓ VR
 - ↓ LVEDV
- ↑ PCWP
- ↑ SVR
- ↑ MAP
- ↑ Afterload
- ↓ SV
 - x HR
 - = ↓ CO
- ↑ CO₂
- ↑ Vasopressin & Catecholamines
Cardiovascular Effects:

- ↑ IAP
- ↑ CVP
- ↑ PCWP
- ↑ MAP
- ↑ SVR
- ↓ VR
- ↓ MC
- ↑ CO₂
- ↓ CO₂
- ↓ SV
- x HR
- = ↓ CO

Afterload ↑ → MAP ↑ → SVR ↑ → CO₂ ↑

Vasopressin & Catecholamines ↑ → MC ↓ → SV ↓ → CO ↓
Cardiovascular Effects:

• Cardiac Output
 – Variation between studies
 – < 30% decrease when observed
 – On insufflation; $\infty \uparrow$ in I.A.P; transient
 • generally noted in:
 – ASA Class III/IV
 – hypovolemic patients
 – PP > 15 mm Hg
 – reverse Trendellenberg position
Respiratory Effects:

- ↑ IAP
 - ↓ FRC
 - ↑ Ve & work of breathing
 - ↑ RR
 - ↑ PARP
 - ↓ chest wall compliance
 - ↓ TV
 - ↑ ITP
 - ↑ cephalad shift diaphragm
 - paradoxic diaphragm motion
 - ↑ CO₂
 - Hypercapnia
 - ↑ Ve & work of breathing
 - ↑ RR

↑ ITP
↓ chest wall compliance
↓ TV
↑ Ve & work of breathing
↑ RR
Respiratory Effects:

- ↑ respiratory acidosis, V_e req’ts in ASA III / IV patients
 - Pre-op FEV < 70 % predictive
- ↓ FRC, TV more marked in obese / compromised patients
- Post-op FEV, FVC, FRC lower with PP
- No long term change in PaCO$_2$
Respiratory Complications:

- Pneumothorax / Pneumomediastinum / Pneumopericardium
 - 2° to diffusion of gas from pneumoperitoneum
 - Accidental diaphragm injury / pre-existing diaphragmatic defect
 - 2° to rupture of blebs with ↑ PAWP

- Gas Embolism
 - 2° to vascular injury
 - trocar / needle insertion on insufflation / intra-op vessel injury
Back to Case:

- Peritoneum desufflated
- “Millwheel” Murmur heard
- Durant position
 - Steep Trendellenberg, Left Lateral Decubitus
- 100% O_2, hyperventilation to excrete CO_2
- Insertion of CVL \rightarrow aspirate air bubbles
Gastrointestinal effects:

- ↑ I.A.P.
 - ↓ Mesenteric & celiac flow
 - ↓ perfusion intestines & stomach
 - ↓ intestinal & gastric pH
 - ↓ Portal flow
 - ↓ hepatic artery flow
 - ↓ hepatic perfusion
 - ↑ LFTs
Renal Effects:

↑ CO₂

↑ I.A.P.

↓ GFR

↓ U/O

↓ ERPF

RAAS
Renal Effects:

- U/O return to baseline within hours
- No long-term change in GFR
- No change in Cr, BUN
Peripheral Vascular Effects:

\[\uparrow \text{I.A.P.} \]

\[\downarrow \]

\[\downarrow \text{VR} \]

\[\rightarrow \text{Venous stasis} \]

\[\rightarrow \text{Reverse Trendellenberg} \]

\[\uparrow \text{Risk DVT?} \]
Peripheral Vascular Effects:

• Incidence of DVT, PE generally lower post laparoscopic procedures
 – Secondary to improved prophylaxis?
 – Risk increased with longer procedures and reverse Trendellenberg
E.A.E.S. Clinical Practice Guidelines on Pneumoperitoneum for Laparoscopic Surgery*

• Cardiovascular:
 – ASA I/II
 • Hemodynamic effects of 12 - 14 mmHg capnoperitoneum rarely clinically relevant (grade A)
 – ASA III/IV
 • Invasive BP/ volume measurement should be considered (grade A)
 • Adequate pre-op volume loading +/- B-blockers recommended (grade A)

*EAES International Congress 2002
E.A.E.S. Clinical Practice Guidelines on Pneumoperitoneum for Laparoscopic Surgery

• Cardiovascular:
 – ASA III/IV
 • Gasless or low-pressure laparoscopy may be alternative for patients with limited cardiac function (grade B)
E.A.E.S. Clinical Practice Guidelines on Pneumoperitoneum for Laparoscopic Surgery

- **Respiratory:**
 - CO$_2$ pneumoperitoneum causes hypercapnia and respiratory acidosis
 - ETCO$_2$ monitoring is mandatory and V_e should be increased to maintain normocapnia (grade A)
E.A.E.S. Clinical Practice Guidelines on Pneumoperitoneum for Laparoscopic Surgery

• Respiratory:
 – In patients with normal lung function, effects not relevant (grade A)
 – In patients with limited pulmonary reserves:
 • Laparoscopic surgery preserves post-op pulmonary function better than open surgery (grade A)
 BUT:
 • Intra- and post-op ABG monitoring recommended (grade A)
 • ↓ IAP and controlling hyperventilation reduce respiratory acidosis (grade A)
 • Gasless laparoscopy, low-pressure PP may be alternatives (grade B)
E.A.E.S. Clinical Practice Guidelines on Pneumoperitoneum for Laparoscopic Surgery

• G.I:
 – ASA I-II:
 • changes in liver perfusion (grade A) and splanchnic perfusion (grade D) 2° IAP of 12-14 mmHg have no clinically relevant effects on organ function
 – Patients with impaired hepatic function:
 • IAP should be as low as possible to reduce microcirculatory disturbances (grade B)
E.A.E.S. Clinical Practice Guidelines on Pneumoperitoneum for Laparoscopic Surgery

• Renal:
 – ASA I-II:
 • Changes in kidney perfusion 2° IAP of 12-14 mmHg have no clinically relevant effects on organ function
 – Patients with impaired renal function:
 • Adequate volume loading before and during elevated IAP (grade A)
 • IAP should be as low as possible to reduce microcirculatory disturbances (grade B)
E.A.E.S. Clinical Practice Guidelines on Pneumoperitoneum for Laparoscopic Surgery

• Peripheral Vascular:
 – Head-up position and elevated intra-abdominal pressure independently ↓VR from lower extremities (grade A)
 – Thromboprophylaxis mandatory
 – Sequential intermittent pneumatic compression of lower extremities reduces venous stasis and is recommended for all prolonged laparoscopic procedures (grade A/B)
References: