Physiologic Effects of Acute Hemorrhage

Paul Mathew
POS Rounds
Dec 3, 2003
Hemorrhage

- Abnormal internal or external loss of blood

Do you have an appointment?
Hemorrhage – Points to consider

- Circulatory System
- Hemorrhage Classification
- Hemorrhage Control
- Stages of Hemorrhage
- Hemorrhage Assessment
- Hemorrhage Management
Circulatory System

- Delivery of nutrients and O_2 to tissues and cells
- Transportation of waste products produced by metabolism to liver and kidneys
- Delivery of CO_2 to lungs
Components of Circulatory System

- Heart or pump
- Blood vessels or pipes
- Blood or fluid
Cardiac Terminology

- Stroke Volume
- Preload
- Ventricular Filling
- Frank-Starling Mechanism
- Afterload
Terminology

- **Preload**
 - Represents filling of the ventricle
 - Volume of blood delivered to atria prior to ventricular diastole
 - *Dependent on venous return*

- **Afterload**
 - Amount of *resistance* heart must overcome to eject blood

- **Contractility**
 - Ability to contract, *inotropy*
 - *Frank Starling’s Law*
Frank – Starling Law =

- The force exerted/beat of heart is directly proportional to the length of fibers
Factors necessary for systemic O2 delivery

- Ability of O$_2$ to diffuse across alveolar membrane into blood stream
- Adequate number of RBC’s to transport O$_2$
- Adequate blood flow to transport RBC’s
- Ability of RBC’s to off-load O$_2$
Cardiac Output

- Volume of blood pumped in 1 minute
- SVxHR = CO
- Heart:
 - Parasympathetic Nervous System
 - Slows rate
 - Vagus Nerve
 - Sympathetic Nervous System
 - Increases rate
 - Cardiac Plexus
Blood Pressure

- Directly proportional to the product of the CO multiplied by SVR
- $BP = CO \times SVR$
- SVR, resistance to flow in the system (systemic vascular resistance)
Hemorrhage Classification

CAPILLARY
- Slow, even flow
- Bright red color

VENOUS
- Steady, slow flow
- Dark red color

ARTERIAL
- Spurting blood
- Pulsating flow
- Bright red color
Body composition - blood

- 60% of body weight is fluid
 - 7% circulating blood volume (CBV): Male
 - 5 L (10 units)
 - 6.5% CBV in women
 - 4.6 L (9-10 units)
Stages of Hemorrhage

Stage 1

- 15% loss of CBV
 - 70 kg pt = 500-750 mL
- **Compensation**
 - Vasoconstriction
 - Normal BP, Pulse Pressure, Respirations
 - Slight Elevation of Pulse
 - *Release of catecholamines*
 - Epinephrine
 - Norepinephrine
 - Anxiety, slightly pale and clammy skin
Stages of Hemorrhage

Stage 2

- 15-25% loss of CBV
 - 750-1250 mL

- *Early Decompensation*
 - Unable to maintain BP
 - Tachycardia & Tachypnea

(continued)
Stages of Hemorrhage

Stage 2

- Decreased pulse strength
- Narrowing pulse pressure
- Significant catecholamine release
 - Increase PVR
 - Cool, clammy skin & thirst
 - Increased anxiety and agitation
 - Normal renal output
- MAP
 - < 70 hypoperfusion
MAP

- Mean Arterial Pressure
- \(\text{Systolic} + \frac{2(\text{diastolic})}{3} \)
- Map should be maintained \(\geq 70 \)
Stages of Hemorrhage

Stage 3

- 25-35% loss of CBV
 - 1250-1750 mL

- Late Decompensation (Early Irreversible)
 - Compensatory mechanisms unable to cope with loss of Blood Volume

(continued)
Stages of Hemorrhage
Stage 3

• Classic Shock
 • Weak, thready, rapid PULSE
 • Narrowing pulse pressure = < MAP
 • Tachypnea
 • Anxiety, restlessness
 • Decreased LOC
 • Pale, cool and clammy skin
Stages of Hemorrhage

Stage 4

- >35% CBV Loss
 - >1750 mL
- **Irreversible**
 - Pulse: Barely palpable
 - Respiration: Rapid, shallow and ineffective
 - LOC: Lethargic, confused, unresponsive
 - GU: Ceases
 - Skin: Cool, clammy and very pale
 - Unlikely survival
Stages of Hemorrhage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Blood Loss</th>
<th>Vasoconstriction</th>
<th>Pulse Rate</th>
<th>Pulse Pressure/Strength</th>
<th>BP</th>
<th>Resp. Rate</th>
<th>Resp. Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><15%</td>
<td>↑</td>
<td>↑</td>
<td>➔</td>
<td>➔</td>
<td>➔</td>
<td>➔</td>
</tr>
<tr>
<td>2</td>
<td>15-25%</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↓</td>
<td>➔</td>
<td>↑</td>
<td>➔</td>
</tr>
<tr>
<td>3</td>
<td>25-35%</td>
<td>↑↑↑</td>
<td>↑↑↑</td>
<td>↓↓</td>
<td>↓</td>
<td>↑↑</td>
<td>↓</td>
</tr>
<tr>
<td>4</td>
<td>>35%</td>
<td>↓↓</td>
<td></td>
<td>↓↓↓</td>
<td>↓</td>
<td>↓</td>
<td>↓↓</td>
</tr>
</tbody>
</table>

Average Blood Volume = 5 L
Stages of Hemorrhage

Concomitant Factors

- Pre-existing condition
- Rate of blood loss
- Patient Types
 - *Pregnant*
 - >50% blood volume than normal
 - Fetal circulation is impaired when mother is compensating
 - *Athletes*
 - Greater fluid and cardiac capacity
 - *Obese*
 - CBV is based on IDEAL weight (less CBV)

(continued)
Stages of Hemorrhage
Concomitant Factors

Children
CBV 8-9% of body weight
Poor compensatory mechanisms
TREAT AGGRESSIVELY

Elderly
Decreased CBV
Medications: BP, & Anticoagulants
Compensation

- Respiratory
- Cardiovascular
- Sympathetic NS activation
- Neuroendocrine Response
- Transcapillary refill
Respiratory Compensation

- Chemoreceptors located in carotid body and aortic arch
 - Communicate respiratory center via CN IX, X
 - \(\text{PaO}_2 < 50 \text{mmHg} \), hypoxemia
 - \(\text{PaCO}_2 \) increased, hypercarbia
 - Acidosis

- Increased rate, depth or respirations
Respiratory Control

- Increased blood CO2
- Decreased blood O2
- Decrease CSF pH (acidosis)
- Mast cells release histamine
Histamine Release

- Eventually:
- Vasodilation
 - Increased venous capacitance
 - Blood pooling
- Increased vascular permeability
 - Leaking into tissues
 - Edema
Circulation

- **Vascular Control**
 - Increased sympathetic tone results in increased vasoconstriction

- **Microcirculation**
 - Blood flow in the arterioles, capillaries and venules
 - Sphincter Functioning

![Diagram of microcirculation](image_url)

a. Blood directed to the tissue.
b. Blood bypassing the tissue.
The Body’s Response to Blood Loss

- Greater Loss
 - \(\uparrow\) Cellular Ischemia
 - \(\downarrow\) Capillary Microcirculation
 - \(\uparrow\) Possibility of Capillary Washout
 - Buildup of lactic acid and CO\(_2\)
 - Relaxation of post capillary sphincters
 - Release of byproducts into circulation
 - PROFOUND METABOLIC ACIDOSIS
PNS & SNS always act in balance

Baroreceptors: Monitor BP

- Location
 - Aortic Arch
 - Carotid Sinuses
- Send Impulses to the Medulla
 - Cardioacceleratory Center
 - SNS: controls release of E and NE
 - Cardioinhibitory Center
 - PNS: controls the vagus nerve
- Vasomotor Center
 - Arterial and Venous tone
Cardiovascular System Regulation

- Chemoreceptors
 - Monitors level of CO$_2$ in CSF
 - pH CSF
 - Monitors level of O$_2$ in blood
Antidiuretic Hormone (ADH)
- aka: Arginine Vasopressin (AVP)
- Released
 - Posterior Pituitary
 - Drop in BP or Increase in serum osmolarity
- Action
 - Increase in peripheral vascular resistance
 - Increase water retention by kidneys
 - Decrease urine output
 - Splenic vasoconstriction
 - 200 mL of free blood to circulation
Angiotensin II

- Released
 - Primary chemical from Kidneys
 - Lowered BP and decreased perfusion
- Action
 - Converted from Renin into Angiotensin I
 - Modified in lungs to Angiotensin II
 - 20 minute process
 - Potent systemic vasoconstrictor
 - 1 hour duration
 - Causes release of ADH, Aldosterone and Epi
Aldosterone

- Release
 - Adrenal Cortex
 - Stimulated by Angiotensin II
- Action
 - Maintain kidney ION balance
 - Retention of sodium and water
 - Reduces insensible fluid

(continued)
Glucagon

> Release
 Alpha Cells of Pancreas
 Triggered by Epi

> Action
 Causes liver and skeletal muscles to convert glycogen into glucose
 Gluconeogenesis
Neuroendocrine Response

- ACTH (adrenocorticotropic hormone) secreted by pituitary
- Stimulates adrenal cortex to produce aldosterone and cortisol
- Aldosterone causes reabsorption of Na & H2O in kidney
- Kidney releases renin when cells of juxtaglomerular apparatus (JGA) are hypoperfused
- Renin accelerates conversion angiotensin to angiotensin I
- Lung tissue converts angiotensin I to angiotensin II, potent vasoconstrictor and stimulates release aldosterone
Cortisol

- Stimulates protein synthesis
- Adrenal medulla secretes epi and NE
- Vasopressin (ADH) released by posterior pituitary in response to increased osmolality
- Causes distal renal tubules to increase H2O absorption
Scenarios

- **Mild Hemorrhage (500 mL)**
 - Decreased central blood volume
 - Venous return and decreased CO
 - Decreased arterial pressure
 - Causes: 1. Small increase in peripheral resistance
 - 2. Small decrease in pulse pressure
Scenarios

- **Greater Hemorrhage (800mL)**
 - Increased HR and contractility
 - Constriction of resistance and capacitance vessels
 - skin, splanchnic, renal, skeletal muscles
 - Renal Vasoconstriction reduces GFR
Plasma Volume Maintenance

1. **Vasoconstriction**
 - Decreases circulatory capacity
 - Decreases capillary pressure

2. **Sympathetics**
 - General vasoconstriction
 - Reduced renal blood flow decreases GFR
 - Decreased Atrial Stretch causes reflex release of ADH
3. Aldosterone and vasopressin
 - Decreases Na⁺ and water excretion

Factors which restore plasma volume:

> Reduced cap pressure and renal vasoconstriction
> Increased vasopressin and aldosterone levels