Objectives

- Define entity
- Etiology
- Differentiation of UGI ulcers
- Pathophysiology
- Identify population at risk/risk factors
- Clinical presentation and diagnosis
- Prevention and treatment/prognosis
- Research and practice guidelines
Definition

- Multiple shallow erosions in the stomach and/or duodenum secondary to severe and unremitting physiologic stress that tend to cause hemorrhage but not perforation
- The GI component of multi-organ failure
Etiology

- Shock
- Sepsis
- CNS tumors/trauma
- Burns
- Multi-trauma
Differentiating stress ulcers

- Stress ulcers

- Variants
 - Cushing’s ulcers
 - Curling’s ulcers
Differentiating stress ulcers

- Stress ulcers
 - Shallow discrete lesions but can coalesce
 - Congestion and edema
 - Little inflammatory reaction at the margins
 - Predilection for parietal mucosa
 - Duodenal involvement 30%
 - Sometimes both
Differentiating stress ulcers

- Cushing’s ulcers
 - 2° to CNS trauma
 - ↑ vagal activity from ↑ ICP
 - High acid output and ↑ circulating gastrin
 - Solitary
 - Morphologically similar to ordinary gastroduodenal ulcer
 - Tendency to perforate
Differentiating stress ulcers

- Curling’s ulcer
 - ° to thermal injuries/burn victims
 - gastric secretions
 - Perforation more common than stress ulcers
 - May be anywhere along GI tract
Pathogenesis

- Acute in onset
- Multiple in number but can coalesce
- Commonly located in proximal stomach
- Not associated with hypersecretion of acids
- Failure of cytoprotective factors
Pathophysiology

1. ↓ gastric blood flow/mucosal ischemia
 - ↓ supply of blood buffers
 - ↓ neutralization of H⁺ ions

2. ↓ mucosal resistance
 - Circulating toxins
 - ↓ mucosal renewal
 - ↓ production of endogenous prostanoids
 - Thinning of surface mucus layer
 - ↑ corticosteroid secretion/administration
 - Bile reflux
 - Drug exposure (ASA, NSAIDS)
Pathophysiology

- **Gastric protection**
 - Mucus secretion
 - HCO_3^- secretion
 - Epithelial restitution
 - ‘Alkaline tide’ that neutralizes acid
 - Energy mismatch when metabolic demand of acid secretion not met with sufficient blood flow
- None appears to contribute to stress ulceration
- ↓ blood flow is major factor
3. ↑ back diffusion of H\(^+\) and subsequent acid-induced injury
 - ? Relation to acid hypersecretion
 - Theory is disputed
 - Formation of ulceration is function of:
 - Rate of decline in intramucosal pH
 - Absolute intramucosal pH
 - Duration of intramucosal pH outside normal limits
Pathophysiology

- Animal model:
 - Neutralization of pH - ↓ stress ulceration
 - ↑ acid secretion with stress
 - No evidence that ↑ acid secretion in ulceration area
 - ↑ acid secretion in burn & CNS trauma victims
 - More common to manifest as serious bleeding
 - More benign in other etiologies of stress ulcers
 - Neutralization of pH does not prevent ulceration
Pathophysiology

- Back diffusion seen in less than $\frac{1}{2}$ of patients
- Mucosal damage in absence of acid
- R_x neutralization of acids – modest results
 - ? Acids only have a modest role

- Acid does play a role – extent unknown
- ? Effect rather than a cause
Population at risk

- UGI bleed from stress ulceration
 - ICU – 5%
 - Severe trauma – 20%
 - Burns (>35% TBSA) – up to 50%
Risk factors

• Risk Factors
 – Etiologic factor present
 – Large transfusion requirements
 – ARDS
 – Ventilator > 48 hr
 – ICU > 1 week
 – Oliguric renal failure
 – Post-traumatic hepatic dysfunction
 – Coagulopathy (complications moreso than cause)
 – High dose steroids
Natural History

- Precipitating insult
- Superficial mucosal erosion
- Progression and coalescence (20% if untreated)
- Overt bleeding (3-5 d post insult)
- Clinically important bleeding (4-5 d post insult)
- Anemia and hypovolumia

- All bleeding stops eventually
Natural history

- Overt bleeding
 - Hematemesis, bloody gastric aspirate
 - Melena
 - Hematochezia
Natural history

• Clinically significant bleeding
 – Overt bleeding +
 • ↓ BP 20 mmHg in 24 hr
 • ↓ BP 10 mmHg + ↑ HR 20 on orthostatic change
 • ↓ Hgb 20 g/L + transfuse 2U blood in 24 hr
 • Requiring surgery
Clinical presentation

- Precipitating insult – asymptomatic (GI)
 - Within 24-48 hr: >60% have erosions
- UGI bleed ~ 20% of susceptible patients
 - Painless hematemesis (NG tube aspirate)
 - Melena/hematochezia – uncommon initial presentation
 - Clinical onset of hemorrhage 3-5 d post insult
 - Massive bleeding 4-5 d post insult
Clinical presentation

- Perforation
 - 10% of cases (not initial presentation)
- Manifestations of etiology
 - Shock, sepsis, burns, CNS, multi-trauma
 - Deteriorating vital signs – hypovolumia
 - Autopsy
Diagnosis

• H & P
 – Risk factors
 – Precipitating insult causing stress
 – Vital signs – hypovolumia
 – Stool for occult blood

• Index of suspicion
 – critically ill patient with painless UGI bleed
 – Presence of risk factors
Diagnosis

- **Barium swallow**
 - Inaccurate because superficial in nature
- **Arteriography**
 - Not 1st line
- **Endoscopy**
 - Correctly identify bleeding source in 90%
 - Erosions 24-48 hr post insult
 - Subclinical diagnosis
 - ? Coag or diathermy – diffuse process
Treatment

- Resuscitation
- Control of hemorrhage
- Prevention of recurrence
- Patient survival – underlying cause
Treatment

- ABCs
 - Resuscitation (Burn victim - 3cc/kg/%TBSA)
 - Restore circulating blood volume
 - Restore cardiac output
 - IVF, blood, clotting factors
 - Aggressive monitoring
 - Art line, Swan-Ganz, ins and outs
- Treat underlying cause
 - Ulceration is superficial – resolve with removal of etiology
- Correct acid-base imbalance
Treatment

- **Prevention**
 - **Prophylaxis**
 - Reduce amount of intraluminal acid
 - Intragastric antacid (titrate pH > 3.5-4)
 - H₂ blockers
 - PPI
 - sucralfate
 - Early institution of feeding reduces incidence
 - TPN patients seem to be protected – No benefit from H₂ blockers in this group
 - Avoid surgery if possible
Treatment

- Studies of cimetidine vs. intragastric antacid
 - pH > 3.5
 - Antacid better irrespective of cimetidine dosage
 - Bleeding
 - 2-18% with cimetidine
 - 0-5% with antacid
 - Endoscopic
 - No difference in mucosa
Treatment

- Why cimetidine fail?
 - Inadequate drug delivery
 - ↓ secretion but ↓ buffer
 - ? Importance of ↓ acid secretion in stress ulcers
Treatment

- Gastric lavage with chilled solutions
 - Combat sepsis
- H$_2$ blockers
 - not effective for treating active bleeding
 - ↓ rate of rebleed
 - ↓ acidity – theoretically ↑ risk nosocomial pneumonia
 - Not supported by experience
- Some success with vasoconstrictors
 - percutaneous vasopressin into Left gastric artery
 - Before surgery
Treatment

- Surgery
 - Vagotomy and drainage
 - Vagotomy and pyloroplasty – ? treatment of choice
 - With oversewing of bleeding areas
 - Vagotomy and extensive subtotal gastrectomy
 - With oversewing of bleeding areas
 - Total gastric devascularization
 - Total gastrectomy – if needed for extent of ulcers
 - Inadvisable if other option due to ↑ operative mortality
Treatment

- Vagotomy
 - Reduce gastric secretion
 - Favors opening of AV shunts
 - Divert blood from engorged mucosa
Prognosis

- Dependent on etiology and PMH of patient

- Mortality
 - 30-40% in any circumstance
Research

- Many studies in literature
- Different patient populations
- Different clinical problems
- Different outcomes
 - Some clinically insignificant
Cook et al.
- 269 studies of stress ulcer prophylaxis
- 63 comparable and included in meta-analysis

- **H₂ Blockers**
 - ↓ overt bleeding
 - ↓ clinically important bleeding

- **Sucralfate**
 - ↓ overt bleeding
 - Insufficient data on clinically significant bleeding
 - Less pneumonia and better overall survival than other regimens
Cook et al. – also prospective multicentre study on risk factors for clinically significant GI bleeding in ICU patients

- Incidence low – 33/2252 (1.5%)

- Risk factors
 - Coagulopathy
 - Ventilation > 48 hr
Practice guidelines

? How we judge bleeding as significant
- Endoscopic evidence with no occult blood
- No overt bleeding
 - Therapy doesn’t change outcome
 - Potential unnecessary side effects
 - $$$
- Clinically significant bleeding
 - Incidence low
 - Treat those with risk factors
American Society of Hospital Pharmacists

- Prophylaxis provided for:
 - Ventilated > 48 hr
 - ICU with coagulopathy
 - H$_x$ of GI ulceration or bleeding 1 year prior to admission
 - 2 or more of the following risk factors
 - Sepsis, ICU > 1 week, occult bleeding > 6 days, high dose steroids (>250 mg hydrocortisone or =)
Practice guidelines

- Prophylaxis recommended for:
 - ICU with GCS ≤ 10 or inability to obey simple commands
 - Thermal injury $> 35\%$ TBSA
Practice guidelines

- Prophylaxis beneficial for:
 - Partial hepatectomy or liver failure
 - Multi-trauma
 - Spinal cord injuries
 - Transplant patients

- Patients not in ICU do not benefit from prophylaxis
Practice guidelines

• Studies supporting these recommendations show
 – ↓ clinically significant bleeds with H$_2$ blockers and sucralfate
 – Insufficient data for efficacy of PPI or misoprostol
 – Measuring gastric pH does not help manage the problem
 – Major complication is pneumonia
 • Not supported by experience
Conclusion

- Very high morbidity and mortality
- High index of suspicion in patients at risk
- Aggressive resuscitation
- Prophylaxis
 - H_2 receptor blockade
- Treat underlying cause
 - Ulcerations are superficial and reversible
References

• Essentials of Surgery
 – Sabiston (1987)

• Principles and Practice of Surgery
 – Forest, Carter, MacLeod (1991)

• Current Surgical Diagnosis and Treatment

• Surgery: Basic Science and Clinical Evidence
 – Norton, et al. (2001)